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Abstract. There is little agreement on terminology in model composition, and 
even less on key characteristics of a model composition solution. We present 
three composition frameworks: the Atlas Model Weaver, the Epsilon Merging 
Language, and the Glue Generator Tool, and from them derive a core set of 
common definitions. We use this to outline the key requirements of a model 
composition solution, in terms of language and tool support. 

1   Introduction 

Model composition involves combining different models in a Model-Driven Deve-
lopment process. Model composition is an emerging research field, based on related 
work in aspect-oriented modelling [14], database schema integration [11,12], and 
model transformation [15]. There is not, as yet, an agreed vocabulary, glossary, and 
set of definitions on model composition. Nor is there an agreed set of basic require-
ments for model composition languages and tools. 

This paper addresses these issues by deriving a common set of definitions for 
model composition, and from this deriving a set of fundamental requirements for 
model composition languages and tools. We base our presentation on an assessment 
of three functional frameworks: the Glue Generator Tool [7, 8], the Epsilon Merging 
Language [6], and the Atlas Model Weaver [10]. Based on these frameworks, we 
derive a set of common definitions, before presenting a set of solution requirements. 

Let us consider the simplified situation where there are three models Ma, Mx and 
Mb conforming to metamodels MMa, MMx and MMb. A typical transformation 
problem may be stated as follows: given Ma and Mx compute Mb. Mx is the 
transformation model that, when applied to Ma, produces Mb. There are no specific 
constraints on metamodels MMa and MMb, but metamodel MMx defines the trans-
formation language, for example ATL [15]. Alternatively, computing Mx from Ma 
and Mb is clearly a more difficult issue, different from a transformation. This 
situation corresponds to one kind of composition problem which is, in general more 
complex. In this case we have usually no constraint on metamodels MMa, MMx or 
MMb. We see here that model transformation is quite well understood while model 
composition still needs further investigation. Furthermore, a composition may 
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sometimes also be perceived as a transformation with two input models and one 
output model. 

Which kind of composition scheme are we going to use in the aforementioned 
composition examples? Can the composition of Ma and Mb to produce Mx be comp-
letely automated or do we need in some cases to resort to some external inter-vention? 
Can we define merging heuristics that could be applied to Ma and Mb in order to 
produce Mx? Should model composition be considered as a one shot operation or 
could it be decomposed in several phases of discovering correspondences first and 
then transforming these correspondences into operational mappings that could be 
solved by multi-input model transformation? There are many open questions in the 
field of model composition. There are also several partial solutions. What we need is 
to place these various solutions within one common conceptual framework in order to 
identify a canonical scheme that will allow us to compare them and to show their 
complementarities.  

This paper is organized as follows. Section 2 describes three model composition 
solutions that have been independently developed in the context of the ModelWare 
European Integrated project. These solutions are addressing different goals and may 
be typical of which kind of problems could be solved by model composition 
techniques. Section 3 provides a glossary and some common definitions because we 
recognize that without solid foundations it will not be possible to produce any 
canonical scheme for model composition. These definitions are based on graph 
theory. Building on the two previous parts, Section 4 proposes an initial set of 
requirements for model composition frameworks. While this work does not claim 
completeness, it concludes that the problem of model composition should not be 
confused with plain model transformation. The issues are much broader and there is 
an urgent need for additional work in this field. 

2   Model Composition Frameworks 

We now describe three functional model composition frameworks, and from these 
descriptions identify a canonical scheme for model composition based on a glossary 
and a common set of definitions. A significant summary of the state-of-the-art in 
model composition would be a useful contribution but goes beyond the scope of this 
paper. In particular, related work may be found in XML, aspect-oriented program-
mming, data engineering, the semantic web, and elsewhere. 

2.1   Atlas Model Weaver (AMW) 

The Atlas Model Weaver is a model composition framework that uses model weaving 
and model transformations to produce and execute composition operations. The 
model resulting from a composition may contain parts or all of the elements of the 
input models, and it may also have new elements. AMW has been used to handle 
several problems in data engineering [16]. The tool is available as open source from 
the Eclipse GMT project [10]. 

Let us illustrate the composition of two simple object models MA and MB into a 
model MAB. MA contains class Teacher. MB contains classes Professor and 
AssistantProfessor. From this example, we illustrate three possibilities (there may be 
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more) of output model. First, MAB contains one class Professor that contains the 
information from all the other three classes. Second, MAB contains classes Professor 
and AssistantProfessor; Teacher is combined with Professor. Third, MAB has three 
classes: Professor, AssistantProfessor as in the previous scenario, and a new class 
VisitingProfessor. This class contains information about occasional visitors. 

There are different options to implement a composition operation. One is to write a 
transformation by hand. However, model composition scenarios have a set of 
frequently used primitives with specific semantics, such as “merge”, “override” or 
“extends”. These primitives link concepts that represent similar information. We must 
raise the abstraction level of current transformation languages to create composition 
links. The links must be saved, as they are the specification of the operation.  

In AMW, the production of a composition operation is divided in two phases. First, 
a weaving model captures the links between the input model elements, for example 
indicating that Teacher and Professor are combined into Professor, or that Visiting-
Professor is a new class to be created. The weaving model conforms to a weaving 
metamodel. It is a domain specific metamodel dedicated to composition scenarios. It 
contains elements such as “rename”, “override”, “merge”, and elements specifying 
how to solve conflicts between the input models. 

Second, the weaving model is used to generate a transformation. This transfor-
mation is the final composition operation. The code complexity is not an issue here 
because the transformation is automatically produced. The transformation takes two 
input models and produces the composed model as output. 

2.1.1   Weaving Model 
In order to provide a description of a weaving model, let us suppose we have two 
metamodels LeftMM and RightMM. We need to establish links between their 
elements. The type of links specifies how the elements are composed. Some issues 
need be considered regarding the set of links between elements of both metamodels: 

• The set of links cannot be automatically generated because it is often based on 
design decisions or various complex heuristics; 

• It should be possible to save this set of links as a whole, in order to use them later 
to produce the composition operation. 

The weaving model conforms to a weaving metamodel WMM. The weaving model 
is produced by a match operation. A match operation is a combination of automatic 
techniques with user interaction. The produced weaving model relates with the source 
and target metamodels LeftMM and RightMM. Figure 1 illustrates the conformance 
relations of LeftMM, RightMM and WM. 

 

Fig. 1. Weaving conformance relations 
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Each composition link conforms to WMM, which specifies a composition oper-
ation. The link types are divided into matching and composition links. Matching links 
specify the equivalences between elements. Composition links specify how to solve 
conflicts and how to compose the related elements, e.g., equivalent elements are 
merged into one and the right element name is taken as default. 

There is no standard weaving metamodel capable of capturing every semantics to 
compose models. However, various weaving metamodels have a set of common 
concepts: all  provide means to establish links between model elements. We capture 
this in a basic weaving metamodel, and obtain different semantics by extending it. 
This extension operation takes two metamodels as input and returns a weaving 
metamodel. The output metamodel contains all elements from the input metamodels. 

Figure 2 describes our basic weaving metamodel, which contains a WElement, the 
base element from which all the elements inherit. WModel is the root element. WLink 
can be extended to define different matching and composition links, and refers to 
multiple endpoints. WLinkEnd indicates the type of elements that are be composed. 
WElementRef has an identifier (ID) that points to the elements of the input models. 
Each extension of WElementRef implements a different identification mechanism, for 
example XMI-ID. WModel also contains WModelRefs, which is equivalent to the 
reference of WLinkEnd and WElementRef, but for models as a whole. 

Fig. 2. Basic weaving metamodel 

2.1.2   Weaving and Transformations as a Composition Operation 
The weaving model is a high-level specification for the composition operation. It is 
not an executable entity, i.e., there is no specific composition engine to execute it. The 
composition operation is obtained by translating the weaving model into a 
transformation model. It is automatically produced by a higher-order transformation 
(HOT). A HOT is a transformation that either takes a transformation model as input, 
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either produces a transformation model as output, or both. There is one different HOT 
for every weaving metamodel, which defines the semantics of the weaving meta-
model by transforming its instances to executable transformations. 

The elements of the weaving models are transformed into specific composition 
code patterns. For instance one may define an element called Union that combine 
Professor and AssistantProfessor into a single element. Every time the weaving 
model is modified, the composition operation is regenerated. The composition opera-
tions are produced for different transformation languages, such as ATL, SQL or 
XSLT. They are further serialized into the appropriated format (often text). The 
serialized form takes as input the models to be composed. It executes the composition 
between the data sources in the dedicated transformation engine. 

2.2   Glue Generator Tool 

The Glue Generator Tool (GGT) [7, 8] is a framework dedicated to the reuse of 
existing MDA [1] applications, without alteration, to build new ones. In the MDA 
approach, this reuse relates to both PIM and PSM reuse, and to composition as well as 
extension or modification of existing PIMs and PSMs. 

The GGT framework comes with: 

• a metamodel of composition rules, implemented with EMF. Three categories 
of rules are proposed [7]. The correspondence rules are used to put in 
correspondence related model elements. The merge rules are dedicated to the 
composition. They identify which model elements from the source models will 
merge. The override rules are dedicated to the modification. They identify 
which model elements in a source model will be replaced. 

• a Glue Generator Tool for EJB 2.0, implemented using an EMF repository.  

2.2.1   Scope of Work and Approach  
GGT supports construction of a new application from existing ones in the case where 
the original applications were built using PIMs, PSMs, transformations and code. It 
also supports functionality extension of applications built using an MDA approach, 
and in both cases without modifying the original applications. 

As a preliminary requirement, GGT considers that the reuse of PIMs must not 
modify the existing PIMs. Consequently it provides a designer with means to express 
PIM reuse in terms of model composition, extension, and modification. Currently, 
PIMs are expressed in UML 2.0 in terms of class and sequence diagrams. This 
expression of composition (EC) is in addition to the existing PIMs to be composed (or 
extended or modified). Once this expression EC is available, GGT provides a means 
for its automatic translation into its corresponding pieces of model at the PSM level. 
The result of this translation is called glue, since it binds the existing PSMs according 
to EC. As such, the Glue depends not only on the expression EC but also on the type 
of PSMs that it binds.  

For the sake of concreteness, we focus on a specific type of PSM in the presen-
tation that follows: Enterprise Java Beans (EJBs).  
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2.2.2   Glue for EJB PSMs 
The authors in GGT defined the concept of Glue for EJB PSMs according to three 
statements we established from the analysis of the mapping rules of the UML class 
and sequence diagrams onto EJB platforms: 

• R1) a business class maps onto an Entity bean. Its attributes, depending on 
whether they are persistent or not, map onto persistent or simple fields. 

• R2) a process class maps onto a Session bean. Its attributes map onto fields. 
• R3) An association or a dependency between classes, depending on the nature 

of the class (business or process), maps onto EJB Relationships or EJB 
references between the corresponding beans. 

These three statements can be detailed as follows: 

S1) Translating EC is mapping the composition and the override rules expressed 
between PIM elements onto effective merge and replacement of their corresponding 
EJB PSM elements. 

The three rules Ri illustrate how to map PIM elements onto EJB PSM elements, 
and can be used for the translation of EC defined at PIM level by a designer.  

S2) The unit of composition or override at PIM level is the class. 
At the PIM level, the designer can express some composition rules aimed at 

merging some PIM elements, such as:  

1) The merge of features (attributes/ operations) of different classes into one 
feature (attribute/ operation);  

2) The merge of classes of different packages into one class;  
3) The merge of sub-packages of different other packages into one package. 

However, since the encapsulation unit of PIM is the class, all these merges consist 
in merging classes. The merge of the packages consists of merging their corres-
ponding classes. In addition, the merge of attributes or operations must initially deal 
with the merge of their container, which are classes. This also holds for the override 
rules, which consist of replacing elements of one PIM by those of another.  

S3) The composition or the override of classes is the merge or the replacement of 
the corresponding beans 

When considering the three rules Ri mentioned above, we note that the classes at 
PIM level map onto beans.  

These three statements enable us to define the Glue as a PSM binding entity 
responsible for the merge or replacement of beans. These two operations and how the 
Glue achieves them are described in depth in [8]. 

2.2.3   Architecture of the Tool  
The Glue Generator Tool is responsible for automatic generation of the Glue from the 
expression of composition defined at PIM level by a designer. To this end, it inputs a 
composition model defining a set of composition rules, and outputs the Glue that will 
bind the corresponding PSMs. It consists of the Analyzer, the Generator and the 
Controller (Figure 3). 
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The Analyzer parses the input composition rules to build a merge tree or a 
replacement tree according the categories of these rules while checking the semantic 
and syntactic well-formedness of rules. For semantic well-formedness, the authors of 
GGT defined a set of constraints on the rules and have developed automated 
constraint checking operations that run at composition model load time in the 
analyzer. 

The Generator is the builder of Glue and consequently is specific to the platform 
on which the applications run. We currently provide a generator for EJB 2.0 platform 
and another for JMX platform. A generator consists of an API and its implementation. 
The API should allow Controller to create/read/modify the models based on the 
specific platform. The Controller is the processor of GGT. It manages the generation 
of Glue using the API of the Generator. It parses the merge tree and triggers the 
generation of glue according to a generation mechanism. Since the Glue depends on 
the kind of platforms, the generation of the controller also depends on the platforms. 

 
 
 
 
 
 
 
 
 
 

 
 

Fig. 3. Architecture of GGT 

2.3   Epsilon Merging Language 

The Epsilon Merging Language (EML) is a metamodel agnostic language for expres-
sing model compositions. It includes a model comparison and model transformation 
language as subsets, and is built atop a generic model management language called 
the Epsilon Object Language (EOL) [6], which is inspired by OCL. An EML 
specification consists of a set of rules describing how model compositions should be 
carried out. Rules in EML are of three types: match rules, merge rules, and transform 
rules. Match rules can be further subdivided into comparison and conformance rules 
(examples to follow). Each match rule has a unique name and two metaclass names as 
parameters. The rule itself is composed of a compare part and a conform part. The 
rule is executed for all pairs of instances of the metaclasses that appear in the source 
models. The compare part of a match rule determines whether two instances match, 
using a minimum set of (syntactic) criteria. The conform part applies only to instances 
that satisfy the compare part of a rule; the conformance rule part refines this match. If 
the conformance part of the rule fails, then an exception is raised. An example is 
shown in Figure 4: 
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abstract rule ModelElements 
match l: Left!ModelElement 
with r: Right!ModelElement 
extends Elements { 

 
compare { 

return l.name = r.name 
and l.namespace.matches(r.namespace); 

} 
} 
 
rule Classes 

match l: Left!Class 
with r: Right!Class 
extends ModelElements { 

 
conform { return l.isAbstract = r.isAbstract; } 

} 

Fig. 4. Matching rules in EML 

The rule on ModelElements is abstract and provides basic behaviour that is used by 
rules that extend it; EML supports rule reuse via inheritance. The behaviour of this 
abstract rule is to match model elements that have identical names (l.name=r.name) 
and matching namespaces. A similar match rule is used for classes. Classes match 
when they obey the rules declared in their parent and when the conform part of the 
rule holds, i.e., when classes are either both abstract or both not abstract. 

2.3.1   EML Model Element Categorisation 
After the execution of all match rules in an EML specification, all model elements are 
categorised in four groups: those that match and conform; those that match but do not 
conform; those that do not match; and those to which no match rule has applied (the 
last category of element produces warnings). The results of this matching process are 
used in the merging process. In particular, elements that match and conform will be 
merged with their identified opposite. The specification of merging is captured in 
merge rules. Elements that do not match will be transformed into model elements 
compatible with the target metamodel. This is captured using transformation rules.  

2.3.2   EML Merge Rules 
Merge rules in EML are used to specify the behaviour necessary to compose two 
instances of model elements that match and conform. Each merge rule consists of a 
unique name, two metaclass-typed parameters, and a list of the model elements that 
the rule creates in the target model. 

For all pairs of matching instances of the two paramters, the rule is executed and 
the declared empty model element(s) are created in the target model.. The contents of 
the newly created model element are defined by the body of the merge rule. Two 
examples of merge rules are shown in Figure 5: 
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rule ModelElements {   rule Classes { 
   merge l: Left!ModelElement     merge l: Left!Class 
   with r: Right!ModelElement     with r: Right!Class 
   into m: Merged!ModelElement     into m: Merged!Class 
         extends ModelElements  
 
   m.name := l.name;      m.feature := l.feature. 
   m.namespace:=l.namespace.equivalent()      includeAll(r.feature). 
}           equivalent(); 

        } 

Fig. 5. EML Merge Rule 

 
Figure 5 presents two merge rules, one for merging ModelElements and a second 

for merging UML classes (“Classes”). The first rule applies to all Model Elements 
and produces a new, merged ModelElement whose name is that of the left original 
model element, and whose namespace is that of the left original model element. In the 
second rule, the two parameters, l:Left!Class and r:Right!Class, are declared; the 
merge rule is also declared to produce an instance of the Merged!Class metaclass. The 
“Classes” rule creates a new instance of the Class metaclass, carries out all operations 
declared in its parent (ModelElements), and sets the feature list of the new class to be 
the union of all features from the left and right arguments. 

There is a slight twist to the merging rule that takes the union of all features from 
the left and right model elements: the use of the equivalent() operation. This operator 
returns the equivalent of the model element to which it is applied in the target model. 
The equivalent of an element is the result of a merge rule if the element has a 
matching element in the opposite model; otherwise it is the result of a transform rule. 
This operator is necessary because the target and source metamodels may differ, and 
it ensures that all source elements are expressed in the target metamodel. 

A key aspect of merging models in EML is that many merge rules can in fact be 
inferred from the structure of the metamodel itself: for example, when merging two 
classes, a basic merge rule can automatically be inferred that merges the contents of 
the classes (i.e., behavioural features and attributes). Such inferred rule sets we call 
strategies; further details on them (and on EML) can be found in [6]. 

3   Glossary and Common Definitions 

We propose a set of definitions for a model composition framework. They are an 
extraction of the common points of AMW, GGT and EML. The formal definitions are 
intended as a starting point for a common canonical scheme. 

The three frameworks follow standards of model-driven development. This means 
they all have models as the central concept. The models are represented as graphs. In 
this case it is straightforward to converge to a graph model representation. 

Definition 1 (Directed graph). A directed multigraph G = (NG, EG, ΓG) consists of a 
finite set of nodes NG and a finite set of edges EG and a mapping function ΓG : EG → 
NG × NG. 
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Definition 2 (Model). A model M = (G, ω, μ) is a triple where: 

    - G = (NG, EG, ΓG) is a directed multigraph, 
    - ω is itself a model (called the reference model of M) associated to a graph Gω = 

(Nω, Eω, Γω), 
    - μ : NG ∪ EG → Nω is a function associating elements (nodes and edges) of G to 

nodes of Gω. This means both nodes and edges of G are constrained by nodes  
from Gω. 

The relation between a model and its reference model is called conformance. This 
definition allows an indefinite number of levels. However we observe from different 
domains that usually only three levels are sufficient. We call these three levels 
metametamodel (M3), metamodel (M2) and terminal model (M1). 

We illustrate the three levels with different technical spaces: 

    - relational database (RDBMS): the instances (M1), the relational schemas (M2) 
and the relational data model (M3). 

    - XML: the XML documents (M1), XML schemas (M2) and the XML schema 
definition (M3). 

Definition 3 (Metametamodel). A metametamodel is a model that is its own 
reference model. 

A metametamodel is self-defined. This allows using the same set of composition tools 
for the three levels in a uniform way. 

Definition 4 (Metamodel). A metamodel is a model such that its reference model is a 
metametamodel. 

Definition 5 (Terminal model). A terminal model is a model such that its reference 
model is a metamodel. 

The three approaches provide a way to capture the correspondences between the 
models to compose. In AMW, the weaving model has matching and composition 
links. In GGT, the expression of composition (EC) is a model with correspondence, 
composition and override rules. EML provides comparison rules (ECL) that produce a 
weaving model that contains the relationships between the model elements. 
Differently from the previous two approaches, the composition rules are not specified 
within the same model. They specify merge rules that take as input the result of the 
comparison rules. 

We thus define a correspondence model that captures links between different 
models. The metamodel of the correspondence model (correspondence metamodel) is 
extensible, because different matching and composition links are defined (match, 
override, correspondence, equality, merge, JoinClasses). 

Definition 6 (Correspondence model). A correspondence model C = (GC, ω, μ) 
represents links between elements of different models, such that: 

    - S = {Mi = (Gi, ωi, μ); i = [1..n]} is a set of models, 
    - GC has two types of nodes: links and link endpoints, 
    - for each link endpoint, there is an edge coming from a link, 
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    - each link endpoint refers to an element e of a model Mi from the set S by the 
means of identification functions. An identification function ρ takes a link 
endpoint as input and returns an element of a model from the set S. 

Consider two models MA and MB and a correspondence model C. MA contains 
classes FirstName and LastName, MB contains class Name. The correspondence 
model C contains three link endpoints; each endpoint refers to elements FirstName, 
LastName and Name, respectively. There is one link element with outgoing edges to 
all the three end points. 

The correspondence model is created by different procedures. In AMW, the 
weaving model is created by a user interface and pluggable match algorithms (in Java 
code). In GGT, the expression of composition is created by a user interface based on 
EMF. In EML, a match operation is defined using comparison rules (ECL). These 
rules search for relationships between the models elements. The process of creating 
the correspondence model is encapsulated in a match operation. The matching rules 
produce a weaving model as result. 

Definition 7 (Match operation). Match is an operation C = Match (S) that takes a set 
of models S = {Mi = (Gi, ωi, μi); i = [1..n]} as input, searches for equivalences 
between their elements and produces a correspondence model C as output.  

The match operator does not have fixed semantics. The semantic is defined with 
comparison and conformance rules. Comparison rules determine syntactic similarities 
between model elements. Conformance rules identify if a subset of syntactically 
similar elements are semantically compatible. 

In all solutions there are translation and generation procedures. In AMW, 
transformations are used for executing the composition. The composition operation is 
generated using HOTs. In GGT, a Glue is automatically produced from the expression 
of composition. In EML, transformations are used as part of composition rules to add 
elements that do not match in the input models. This generation procedures are 
subsumed in the notion of model transformations. AMW uses metamodel extension to 
extend the basic weaving metamodel before generating a transformation. The 
definitions of metamodel extension and model transformation are given below. 

Definition 8 (Metamodel extension operation). The operation MMA = Extend 
(MMA, MMB) takes two metamodels MMA = (GA, ω, μ) and MMB = (GB, ω, μ) as 
input and extends GA with all nodes and edges of GB. The operation main requirement 
is to create at least one new edge in the resulting metamodel from an element mA ∈ 
NGA ∪ EGA to an element mB ∈ NGB ∪ EGB. We assume that there are no conflicts 
between the two metamodels. 

Consider two class-based metamodels MMA and MMB. MMA contain classes Person 
and Address. One person refers to many addresses. MMB contain classes Teacher and 
Student. MMA is extended with the elements of MMB. The class Professor, classes 
Teacher and Student are copied to MMA, and they is an inheritance relation with 
Person. 

Definition 9 (Model transformation). A model transformation is an operation that 
takes a set of models as input, executes a set of rules over the model(s) elements and 
produces a set of models as output. 
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A transformation has the following signature OUT = T(IN) where T is the 
transformation name, IN is a set of input models and OUT a set of output models. The 
transformation T translates the input models IN into the output models OUT. A 
transformation is a model. This means that all general operations on models may be 
applied to transformations (including transformations). 

In AMW, the weaving model is a high-level specification for the composition. It 
produces a transformation that is the executable composition operation. This 
transformation receives two or more models as input and produces the composed 
model as output. In GGT, the compose operation is a Glue. A Glue is a domain 
specific structure to compose models. A Glue does not create a new composed model, 
but an intermediary structure (for example a Bean for composing EJBs) that virtually 
compose two input models. In EML, there are a set of merge rules to execute the 
composition. Model elements that are not explicitly referenced in the merge rules are 
composed by the means of merge strategies. 

Finally we define the compose operation on two models: 

Definition 10 (Compose operation). The compose operation MAB = Compose (MA, 
MB, CAB) takes two models MA, MB and a correspondence model CAB between them 
as input and combines their elements into a new output model. 

In the three approaches there are some differences in the terminology to specify what a 
composition is. Besides composition, the second most employed term is merge. 
However it is advisable to separate merge and composition. Composition is a more 
general operation. The semantic is specified in the different operations by a set of rules, 
and it varies from case to case. Merge, however, is a special case of model composition. 
Merge has information preservation constraints, i.e., all the information from the input 
models should be present in the output models, and no duplicate information. 

Definition 11 (Merge operation). The merge operation MAB = Merge (MA, MB, CAB) 
takes two models MA, MB and a correspondence model CAB between them as input, 
and returns a model MAB including all the information from MA and MB, without 
duplicate information. The correspondence model is created by the match operation. It 
specifies the elements that are going to be merged. 

4   Requirements for Model Composition Frameworks 

We now identify a core set of requirements for a model composition framework. By 
doing so we attempt to complement the canonical definitions for model composition 
presented in Section 3 with a concrete set of minimal requirements for a model 
composition framework. Obviously, this is an initial set of requirements and it will 
likely need refinement after more practical experience and experiments with the 
frameworks have been carried out. 

4.1   Requirements for a Model Composition Framework 

A model composition framework must provide at least the following operations: 

• means to identify corresponding elements in the models that are to be composed 
(e.g., MOF classes with the same MOF identifier may be said to correspond, e.g., 
a weaving model or a set of rules). 
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• means to define how corresponding elements are to be merged and composed in 
producing the target model; 

• means to define how elements that do not correspond can be transformed to the 
target metamodel, in order to, e.g., not lose information. 

• means to manage and reuse correspondences, merges, and compose operations. 
In AMW this is supported via metamodel extension (e.g., by extending a weaving 
model), whereas in EML this is supported via rule inheritance. 

Thus, a model composition framework should also provide the means to carry out 
transformations (e.g., via MOF 2.0 QVT or ATL) to satisfy the fourth requirement. In 
order to satisfy the first two requirements, a model composition framework should 
include the means to compare models. 

Two desirable, practical requirements can be identified from the previous sections: 

• A model composition framework should provide the means for minimising the 
effort expended by the developer to write composition or merge operations, e.g., 
by allowing rules to be inferred by metamodel structure (e.g., merging strategies 
in EML) or by allowing expressions of composition or weaving models to be 
reused. 

• A model composition framework should be metamodel independent to support 
backwards compatibility, future extension, and a wide suite of modelling tools. 

4.2   Requirements on Model Composition Tools 

Tool support for model composition must provide at least the following: 

• validation and verification of model composition operations, i.e., syntax and type 
checking of rules, merging models, etc. 

• a virtual machine (or similar means) for executing composition operations; 
• a debugger, for analysing failures and inconsistencies that arise during the 

composition process 
• a serialisation mechanism for loading and saving models. 

4.3   Comparison of AMW, GGT, and EML 

We summarise the three previously described model composition frameworks against 
the requirements identified in Section 4.1 and 4.2. The results of the comparison are 
in Table 1; columns represent a particular framework, whereas rows represent a 
model composition framework operation or feature. We note that all three 
frameworks provide reasonably comprehensive coverage of tool requirements (though 
only AMW provides debugging support via its integration with ATL). 

We can observe from the summary in Table 1 that already we are seeing a conver-
gence of functionality in several of the existing frameworks: all three frameworks 
support most, if not all of the operations described in the canonical set of definitions, 
and it is already possible to loosely couple some of the frameworks (AMW and EML) 
together via weaving models. 
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Table 1. Comparison of model composition frameworks 

 GGT AMW EML 
Compose Glue Weaving model Merge rules 
Merge Glue Weaving model Merge rules that 

are information 
lossless. 

Transform Automatically 
carried out. 

ATL 
transformations 

Transform rules 

Match Expression of 
correspondence 
(EC), via EMF GUI 

Weaving model via 
EMF GUI 

Comparison rules 
which produce 
weaving models. 

Correspondence EC Weaving model Comparison rules 
Metamodel extn. No Yes Indirectly, via 

generation of 
weaving model 
imported by 
AMW. 

Tool support No debugger. All. No debugger. 

5   Conclusions 

The main contributions of this paper are a canonical set of definitions regarding 
model composition, and set of requirements for model composition frameworks. The 
intent is that the canonical scheme, definitions, and requirements will be helpful for 
comparing different model composition solutions, building new solutions, and 
assessing the completeness and coherency of existing solutions. The contributions of 
this paper may also be helpful in any future standardisation efforts – within or without 
of the OMG – on model composition. We expect to work further on more closely 
aligning the three frameworks described in this paper, and to explore additional 
operations that engineers find helpful in model composition scenarios. 

The fact that three different solutions for model composition have been developed 
in the same project is not the mere result of hazard. It shows that the problem is of 
practical importance and takes multiple forms. There is an obvious need for 
unification and conceptualization in the field. As discussed in [15], the QVT OMG 
model transformation proposal [2] only marginally addresses the composition issues. 
What we have done in this paper is to gather some experimental material that may 
help giving first class status to model composition as has been done previously with 
model transformation techniques. 
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