
A. Rensink and J. Warmer (Eds.): ECMDA-FA 2006, LNCS 4066, pp. 346 – 360, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Canonical Scheme for Model Composition

Jean Bézivin1, Salim Bouzitouna2, Marcos Didonet Del Fabro1,
Marie-Pierre Gervais2, Fréderic Jouault1, Dimitrios Kolovos3,

Ivan Kurtev1, and Richard F. Paige3

1 ATLAS Group (INRIA & LINA), Université de Nantes, France
{Jean.Bezivin, Frederic.Jouault,

Marcos.Didonet-Del-Fabro, Ivan.Kurtev}@univ-nantes.fr
2 Université de Paris-6, France

{Salim.Bouzitouna, Marie-Pierre, Gervais}@lip6.fr
3 Department of Computer Science, University of York, UK

{paige, dkolovos}@cs.york.ac.uk

Abstract. There is little agreement on terminology in model composition, and
even less on key characteristics of a model composition solution. We present
three composition frameworks: the Atlas Model Weaver, the Epsilon Merging
Language, and the Glue Generator Tool, and from them derive a core set of
common definitions. We use this to outline the key requirements of a model
composition solution, in terms of language and tool support.

1 Introduction

Model composition involves combining different models in a Model-Driven Deve-
lopment process. Model composition is an emerging research field, based on related
work in aspect-oriented modelling [14], database schema integration [11,12], and
model transformation [15]. There is not, as yet, an agreed vocabulary, glossary, and
set of definitions on model composition. Nor is there an agreed set of basic require-
ments for model composition languages and tools.

This paper addresses these issues by deriving a common set of definitions for
model composition, and from this deriving a set of fundamental requirements for
model composition languages and tools. We base our presentation on an assessment
of three functional frameworks: the Glue Generator Tool [7, 8], the Epsilon Merging
Language [6], and the Atlas Model Weaver [10]. Based on these frameworks, we
derive a set of common definitions, before presenting a set of solution requirements.

Let us consider the simplified situation where there are three models Ma, Mx and
Mb conforming to metamodels MMa, MMx and MMb. A typical transformation
problem may be stated as follows: given Ma and Mx compute Mb. Mx is the
transformation model that, when applied to Ma, produces Mb. There are no specific
constraints on metamodels MMa and MMb, but metamodel MMx defines the trans-
formation language, for example ATL [15]. Alternatively, computing Mx from Ma
and Mb is clearly a more difficult issue, different from a transformation. This
situation corresponds to one kind of composition problem which is, in general more
complex. In this case we have usually no constraint on metamodels MMa, MMx or
MMb. We see here that model transformation is quite well understood while model
composition still needs further investigation. Furthermore, a composition may

 A Canonical Scheme for Model Composition 347

sometimes also be perceived as a transformation with two input models and one
output model.

Which kind of composition scheme are we going to use in the aforementioned
composition examples? Can the composition of Ma and Mb to produce Mx be comp-
letely automated or do we need in some cases to resort to some external inter-vention?
Can we define merging heuristics that could be applied to Ma and Mb in order to
produce Mx? Should model composition be considered as a one shot operation or
could it be decomposed in several phases of discovering correspondences first and
then transforming these correspondences into operational mappings that could be
solved by multi-input model transformation? There are many open questions in the
field of model composition. There are also several partial solutions. What we need is
to place these various solutions within one common conceptual framework in order to
identify a canonical scheme that will allow us to compare them and to show their
complementarities.

This paper is organized as follows. Section 2 describes three model composition
solutions that have been independently developed in the context of the ModelWare
European Integrated project. These solutions are addressing different goals and may
be typical of which kind of problems could be solved by model composition
techniques. Section 3 provides a glossary and some common definitions because we
recognize that without solid foundations it will not be possible to produce any
canonical scheme for model composition. These definitions are based on graph
theory. Building on the two previous parts, Section 4 proposes an initial set of
requirements for model composition frameworks. While this work does not claim
completeness, it concludes that the problem of model composition should not be
confused with plain model transformation. The issues are much broader and there is
an urgent need for additional work in this field.

2 Model Composition Frameworks

We now describe three functional model composition frameworks, and from these
descriptions identify a canonical scheme for model composition based on a glossary
and a common set of definitions. A significant summary of the state-of-the-art in
model composition would be a useful contribution but goes beyond the scope of this
paper. In particular, related work may be found in XML, aspect-oriented program-
mming, data engineering, the semantic web, and elsewhere.

2.1 Atlas Model Weaver (AMW)

The Atlas Model Weaver is a model composition framework that uses model weaving
and model transformations to produce and execute composition operations. The
model resulting from a composition may contain parts or all of the elements of the
input models, and it may also have new elements. AMW has been used to handle
several problems in data engineering [16]. The tool is available as open source from
the Eclipse GMT project [10].

Let us illustrate the composition of two simple object models MA and MB into a
model MAB. MA contains class Teacher. MB contains classes Professor and
AssistantProfessor. From this example, we illustrate three possibilities (there may be

348 J. Bézivin et al.

more) of output model. First, MAB contains one class Professor that contains the
information from all the other three classes. Second, MAB contains classes Professor
and AssistantProfessor; Teacher is combined with Professor. Third, MAB has three
classes: Professor, AssistantProfessor as in the previous scenario, and a new class
VisitingProfessor. This class contains information about occasional visitors.

There are different options to implement a composition operation. One is to write a
transformation by hand. However, model composition scenarios have a set of
frequently used primitives with specific semantics, such as “merge”, “override” or
“extends”. These primitives link concepts that represent similar information. We must
raise the abstraction level of current transformation languages to create composition
links. The links must be saved, as they are the specification of the operation.

In AMW, the production of a composition operation is divided in two phases. First,
a weaving model captures the links between the input model elements, for example
indicating that Teacher and Professor are combined into Professor, or that Visiting-
Professor is a new class to be created. The weaving model conforms to a weaving
metamodel. It is a domain specific metamodel dedicated to composition scenarios. It
contains elements such as “rename”, “override”, “merge”, and elements specifying
how to solve conflicts between the input models.

Second, the weaving model is used to generate a transformation. This transfor-
mation is the final composition operation. The code complexity is not an issue here
because the transformation is automatically produced. The transformation takes two
input models and produces the composed model as output.

2.1.1 Weaving Model
In order to provide a description of a weaving model, let us suppose we have two
metamodels LeftMM and RightMM. We need to establish links between their
elements. The type of links specifies how the elements are composed. Some issues
need be considered regarding the set of links between elements of both metamodels:

• The set of links cannot be automatically generated because it is often based on
design decisions or various complex heuristics;

• It should be possible to save this set of links as a whole, in order to use them later
to produce the composition operation.

The weaving model conforms to a weaving metamodel WMM. The weaving model
is produced by a match operation. A match operation is a combination of automatic
techniques with user interaction. The produced weaving model relates with the source
and target metamodels LeftMM and RightMM. Figure 1 illustrates the conformance
relations of LeftMM, RightMM and WM.

Fig. 1. Weaving conformance relations

 A Canonical Scheme for Model Composition 349

Each composition link conforms to WMM, which specifies a composition oper-
ation. The link types are divided into matching and composition links. Matching links
specify the equivalences between elements. Composition links specify how to solve
conflicts and how to compose the related elements, e.g., equivalent elements are
merged into one and the right element name is taken as default.

There is no standard weaving metamodel capable of capturing every semantics to
compose models. However, various weaving metamodels have a set of common
concepts: all provide means to establish links between model elements. We capture
this in a basic weaving metamodel, and obtain different semantics by extending it.
This extension operation takes two metamodels as input and returns a weaving
metamodel. The output metamodel contains all elements from the input metamodels.

Figure 2 describes our basic weaving metamodel, which contains a WElement, the
base element from which all the elements inherit. WModel is the root element. WLink
can be extended to define different matching and composition links, and refers to
multiple endpoints. WLinkEnd indicates the type of elements that are be composed.
WElementRef has an identifier (ID) that points to the elements of the input models.
Each extension of WElementRef implements a different identification mechanism, for
example XMI-ID. WModel also contains WModelRefs, which is equivalent to the
reference of WLinkEnd and WElementRef, but for models as a whole.

Fig. 2. Basic weaving metamodel

2.1.2 Weaving and Transformations as a Composition Operation
The weaving model is a high-level specification for the composition operation. It is
not an executable entity, i.e., there is no specific composition engine to execute it. The
composition operation is obtained by translating the weaving model into a
transformation model. It is automatically produced by a higher-order transformation
(HOT). A HOT is a transformation that either takes a transformation model as input,

350 J. Bézivin et al.

either produces a transformation model as output, or both. There is one different HOT
for every weaving metamodel, which defines the semantics of the weaving meta-
model by transforming its instances to executable transformations.

The elements of the weaving models are transformed into specific composition
code patterns. For instance one may define an element called Union that combine
Professor and AssistantProfessor into a single element. Every time the weaving
model is modified, the composition operation is regenerated. The composition opera-
tions are produced for different transformation languages, such as ATL, SQL or
XSLT. They are further serialized into the appropriated format (often text). The
serialized form takes as input the models to be composed. It executes the composition
between the data sources in the dedicated transformation engine.

2.2 Glue Generator Tool

The Glue Generator Tool (GGT) [7, 8] is a framework dedicated to the reuse of
existing MDA [1] applications, without alteration, to build new ones. In the MDA
approach, this reuse relates to both PIM and PSM reuse, and to composition as well as
extension or modification of existing PIMs and PSMs.

The GGT framework comes with:

• a metamodel of composition rules, implemented with EMF. Three categories
of rules are proposed [7]. The correspondence rules are used to put in
correspondence related model elements. The merge rules are dedicated to the
composition. They identify which model elements from the source models will
merge. The override rules are dedicated to the modification. They identify
which model elements in a source model will be replaced.

• a Glue Generator Tool for EJB 2.0, implemented using an EMF repository.

2.2.1 Scope of Work and Approach
GGT supports construction of a new application from existing ones in the case where
the original applications were built using PIMs, PSMs, transformations and code. It
also supports functionality extension of applications built using an MDA approach,
and in both cases without modifying the original applications.

As a preliminary requirement, GGT considers that the reuse of PIMs must not
modify the existing PIMs. Consequently it provides a designer with means to express
PIM reuse in terms of model composition, extension, and modification. Currently,
PIMs are expressed in UML 2.0 in terms of class and sequence diagrams. This
expression of composition (EC) is in addition to the existing PIMs to be composed (or
extended or modified). Once this expression EC is available, GGT provides a means
for its automatic translation into its corresponding pieces of model at the PSM level.
The result of this translation is called glue, since it binds the existing PSMs according
to EC. As such, the Glue depends not only on the expression EC but also on the type
of PSMs that it binds.

For the sake of concreteness, we focus on a specific type of PSM in the presen-
tation that follows: Enterprise Java Beans (EJBs).

 A Canonical Scheme for Model Composition 351

2.2.2 Glue for EJB PSMs
The authors in GGT defined the concept of Glue for EJB PSMs according to three
statements we established from the analysis of the mapping rules of the UML class
and sequence diagrams onto EJB platforms:

• R1) a business class maps onto an Entity bean. Its attributes, depending on
whether they are persistent or not, map onto persistent or simple fields.

• R2) a process class maps onto a Session bean. Its attributes map onto fields.
• R3) An association or a dependency between classes, depending on the nature

of the class (business or process), maps onto EJB Relationships or EJB
references between the corresponding beans.

These three statements can be detailed as follows:

S1) Translating EC is mapping the composition and the override rules expressed
between PIM elements onto effective merge and replacement of their corresponding
EJB PSM elements.

The three rules Ri illustrate how to map PIM elements onto EJB PSM elements,
and can be used for the translation of EC defined at PIM level by a designer.

S2) The unit of composition or override at PIM level is the class.
At the PIM level, the designer can express some composition rules aimed at

merging some PIM elements, such as:

1) The merge of features (attributes/ operations) of different classes into one
feature (attribute/ operation);

2) The merge of classes of different packages into one class;
3) The merge of sub-packages of different other packages into one package.

However, since the encapsulation unit of PIM is the class, all these merges consist
in merging classes. The merge of the packages consists of merging their corres-
ponding classes. In addition, the merge of attributes or operations must initially deal
with the merge of their container, which are classes. This also holds for the override
rules, which consist of replacing elements of one PIM by those of another.

S3) The composition or the override of classes is the merge or the replacement of
the corresponding beans

When considering the three rules Ri mentioned above, we note that the classes at
PIM level map onto beans.

These three statements enable us to define the Glue as a PSM binding entity
responsible for the merge or replacement of beans. These two operations and how the
Glue achieves them are described in depth in [8].

2.2.3 Architecture of the Tool
The Glue Generator Tool is responsible for automatic generation of the Glue from the
expression of composition defined at PIM level by a designer. To this end, it inputs a
composition model defining a set of composition rules, and outputs the Glue that will
bind the corresponding PSMs. It consists of the Analyzer, the Generator and the
Controller (Figure 3).

352 J. Bézivin et al.

The Analyzer parses the input composition rules to build a merge tree or a
replacement tree according the categories of these rules while checking the semantic
and syntactic well-formedness of rules. For semantic well-formedness, the authors of
GGT defined a set of constraints on the rules and have developed automated
constraint checking operations that run at composition model load time in the
analyzer.

The Generator is the builder of Glue and consequently is specific to the platform
on which the applications run. We currently provide a generator for EJB 2.0 platform
and another for JMX platform. A generator consists of an API and its implementation.
The API should allow Controller to create/read/modify the models based on the
specific platform. The Controller is the processor of GGT. It manages the generation
of Glue using the API of the Generator. It parses the merge tree and triggers the
generation of glue according to a generation mechanism. Since the Glue depends on
the kind of platforms, the generation of the controller also depends on the platforms.

Fig. 3. Architecture of GGT

2.3 Epsilon Merging Language

The Epsilon Merging Language (EML) is a metamodel agnostic language for expres-
sing model compositions. It includes a model comparison and model transformation
language as subsets, and is built atop a generic model management language called
the Epsilon Object Language (EOL) [6], which is inspired by OCL. An EML
specification consists of a set of rules describing how model compositions should be
carried out. Rules in EML are of three types: match rules, merge rules, and transform
rules. Match rules can be further subdivided into comparison and conformance rules
(examples to follow). Each match rule has a unique name and two metaclass names as
parameters. The rule itself is composed of a compare part and a conform part. The
rule is executed for all pairs of instances of the metaclasses that appear in the source
models. The compare part of a match rule determines whether two instances match,
using a minimum set of (syntactic) criteria. The conform part applies only to instances
that satisfy the compare part of a rule; the conformance rule part refines this match. If
the conformance part of the rule fails, then an exception is raised. An example is
shown in Figure 4:

GGT

Composit

ion model

 Checking the
Composition
model
 Building the
Merge tree
 Building the
Replacement tree

Identifica
tion of Glue

Analysis Part Generator
Part

Controller
Part

 Identification of
Glue
 Managing the
generation of
glue

 UML2 Profile for EJB
API &

Implementation

Glue

 A Canonical Scheme for Model Composition 353

abstract rule ModelElements
match l: Left!ModelElement
with r: Right!ModelElement
extends Elements {

compare {

return l.name = r.name
and l.namespace.matches(r.namespace);

}
}

rule Classes

match l: Left!Class
with r: Right!Class
extends ModelElements {

conform { return l.isAbstract = r.isAbstract; }

}

Fig. 4. Matching rules in EML

The rule on ModelElements is abstract and provides basic behaviour that is used by
rules that extend it; EML supports rule reuse via inheritance. The behaviour of this
abstract rule is to match model elements that have identical names (l.name=r.name)
and matching namespaces. A similar match rule is used for classes. Classes match
when they obey the rules declared in their parent and when the conform part of the
rule holds, i.e., when classes are either both abstract or both not abstract.

2.3.1 EML Model Element Categorisation
After the execution of all match rules in an EML specification, all model elements are
categorised in four groups: those that match and conform; those that match but do not
conform; those that do not match; and those to which no match rule has applied (the
last category of element produces warnings). The results of this matching process are
used in the merging process. In particular, elements that match and conform will be
merged with their identified opposite. The specification of merging is captured in
merge rules. Elements that do not match will be transformed into model elements
compatible with the target metamodel. This is captured using transformation rules.

2.3.2 EML Merge Rules
Merge rules in EML are used to specify the behaviour necessary to compose two
instances of model elements that match and conform. Each merge rule consists of a
unique name, two metaclass-typed parameters, and a list of the model elements that
the rule creates in the target model.

For all pairs of matching instances of the two paramters, the rule is executed and
the declared empty model element(s) are created in the target model.. The contents of
the newly created model element are defined by the body of the merge rule. Two
examples of merge rules are shown in Figure 5:

354 J. Bézivin et al.

rule ModelElements { rule Classes {
 merge l: Left!ModelElement merge l: Left!Class
 with r: Right!ModelElement with r: Right!Class
 into m: Merged!ModelElement into m: Merged!Class
 extends ModelElements

 m.name := l.name; m.feature := l.feature.
 m.namespace:=l.namespace.equivalent() includeAll(r.feature).
} equivalent();

 }

Fig. 5. EML Merge Rule

Figure 5 presents two merge rules, one for merging ModelElements and a second

for merging UML classes (“Classes”). The first rule applies to all Model Elements
and produces a new, merged ModelElement whose name is that of the left original
model element, and whose namespace is that of the left original model element. In the
second rule, the two parameters, l:Left!Class and r:Right!Class, are declared; the
merge rule is also declared to produce an instance of the Merged!Class metaclass. The
“Classes” rule creates a new instance of the Class metaclass, carries out all operations
declared in its parent (ModelElements), and sets the feature list of the new class to be
the union of all features from the left and right arguments.

There is a slight twist to the merging rule that takes the union of all features from
the left and right model elements: the use of the equivalent() operation. This operator
returns the equivalent of the model element to which it is applied in the target model.
The equivalent of an element is the result of a merge rule if the element has a
matching element in the opposite model; otherwise it is the result of a transform rule.
This operator is necessary because the target and source metamodels may differ, and
it ensures that all source elements are expressed in the target metamodel.

A key aspect of merging models in EML is that many merge rules can in fact be
inferred from the structure of the metamodel itself: for example, when merging two
classes, a basic merge rule can automatically be inferred that merges the contents of
the classes (i.e., behavioural features and attributes). Such inferred rule sets we call
strategies; further details on them (and on EML) can be found in [6].

3 Glossary and Common Definitions

We propose a set of definitions for a model composition framework. They are an
extraction of the common points of AMW, GGT and EML. The formal definitions are
intended as a starting point for a common canonical scheme.

The three frameworks follow standards of model-driven development. This means
they all have models as the central concept. The models are represented as graphs. In
this case it is straightforward to converge to a graph model representation.

Definition 1 (Directed graph). A directed multigraph G = (NG, EG, ΓG) consists of a
finite set of nodes NG and a finite set of edges EG and a mapping function ΓG : EG →
NG × NG.

 A Canonical Scheme for Model Composition 355

Definition 2 (Model). A model M = (G, ω, μ) is a triple where:

 - G = (NG, EG, ΓG) is a directed multigraph,
 - ω is itself a model (called the reference model of M) associated to a graph Gω =

(Nω, Eω, Γω),
 - μ : NG ∪ EG → Nω is a function associating elements (nodes and edges) of G to

nodes of Gω. This means both nodes and edges of G are constrained by nodes
from Gω.

The relation between a model and its reference model is called conformance. This
definition allows an indefinite number of levels. However we observe from different
domains that usually only three levels are sufficient. We call these three levels
metametamodel (M3), metamodel (M2) and terminal model (M1).

We illustrate the three levels with different technical spaces:

 - relational database (RDBMS): the instances (M1), the relational schemas (M2)
and the relational data model (M3).

 - XML: the XML documents (M1), XML schemas (M2) and the XML schema
definition (M3).

Definition 3 (Metametamodel). A metametamodel is a model that is its own
reference model.

A metametamodel is self-defined. This allows using the same set of composition tools
for the three levels in a uniform way.

Definition 4 (Metamodel). A metamodel is a model such that its reference model is a
metametamodel.

Definition 5 (Terminal model). A terminal model is a model such that its reference
model is a metamodel.

The three approaches provide a way to capture the correspondences between the
models to compose. In AMW, the weaving model has matching and composition
links. In GGT, the expression of composition (EC) is a model with correspondence,
composition and override rules. EML provides comparison rules (ECL) that produce a
weaving model that contains the relationships between the model elements.
Differently from the previous two approaches, the composition rules are not specified
within the same model. They specify merge rules that take as input the result of the
comparison rules.

We thus define a correspondence model that captures links between different
models. The metamodel of the correspondence model (correspondence metamodel) is
extensible, because different matching and composition links are defined (match,
override, correspondence, equality, merge, JoinClasses).

Definition 6 (Correspondence model). A correspondence model C = (GC, ω, μ)
represents links between elements of different models, such that:

 - S = {Mi = (Gi, ωi, μ); i = [1..n]} is a set of models,
 - GC has two types of nodes: links and link endpoints,
 - for each link endpoint, there is an edge coming from a link,

356 J. Bézivin et al.

 - each link endpoint refers to an element e of a model Mi from the set S by the
means of identification functions. An identification function ρ takes a link
endpoint as input and returns an element of a model from the set S.

Consider two models MA and MB and a correspondence model C. MA contains
classes FirstName and LastName, MB contains class Name. The correspondence
model C contains three link endpoints; each endpoint refers to elements FirstName,
LastName and Name, respectively. There is one link element with outgoing edges to
all the three end points.

The correspondence model is created by different procedures. In AMW, the
weaving model is created by a user interface and pluggable match algorithms (in Java
code). In GGT, the expression of composition is created by a user interface based on
EMF. In EML, a match operation is defined using comparison rules (ECL). These
rules search for relationships between the models elements. The process of creating
the correspondence model is encapsulated in a match operation. The matching rules
produce a weaving model as result.

Definition 7 (Match operation). Match is an operation C = Match (S) that takes a set
of models S = {Mi = (Gi, ωi, μi); i = [1..n]} as input, searches for equivalences
between their elements and produces a correspondence model C as output.

The match operator does not have fixed semantics. The semantic is defined with
comparison and conformance rules. Comparison rules determine syntactic similarities
between model elements. Conformance rules identify if a subset of syntactically
similar elements are semantically compatible.

In all solutions there are translation and generation procedures. In AMW,
transformations are used for executing the composition. The composition operation is
generated using HOTs. In GGT, a Glue is automatically produced from the expression
of composition. In EML, transformations are used as part of composition rules to add
elements that do not match in the input models. This generation procedures are
subsumed in the notion of model transformations. AMW uses metamodel extension to
extend the basic weaving metamodel before generating a transformation. The
definitions of metamodel extension and model transformation are given below.

Definition 8 (Metamodel extension operation). The operation MMA = Extend
(MMA, MMB) takes two metamodels MMA = (GA, ω, μ) and MMB = (GB, ω, μ) as
input and extends GA with all nodes and edges of GB. The operation main requirement
is to create at least one new edge in the resulting metamodel from an element mA ∈
NGA ∪ EGA to an element mB ∈ NGB ∪ EGB. We assume that there are no conflicts
between the two metamodels.

Consider two class-based metamodels MMA and MMB. MMA contain classes Person
and Address. One person refers to many addresses. MMB contain classes Teacher and
Student. MMA is extended with the elements of MMB. The class Professor, classes
Teacher and Student are copied to MMA, and they is an inheritance relation with
Person.

Definition 9 (Model transformation). A model transformation is an operation that
takes a set of models as input, executes a set of rules over the model(s) elements and
produces a set of models as output.

 A Canonical Scheme for Model Composition 357

A transformation has the following signature OUT = T(IN) where T is the
transformation name, IN is a set of input models and OUT a set of output models. The
transformation T translates the input models IN into the output models OUT. A
transformation is a model. This means that all general operations on models may be
applied to transformations (including transformations).

In AMW, the weaving model is a high-level specification for the composition. It
produces a transformation that is the executable composition operation. This
transformation receives two or more models as input and produces the composed
model as output. In GGT, the compose operation is a Glue. A Glue is a domain
specific structure to compose models. A Glue does not create a new composed model,
but an intermediary structure (for example a Bean for composing EJBs) that virtually
compose two input models. In EML, there are a set of merge rules to execute the
composition. Model elements that are not explicitly referenced in the merge rules are
composed by the means of merge strategies.

Finally we define the compose operation on two models:

Definition 10 (Compose operation). The compose operation MAB = Compose (MA,
MB, CAB) takes two models MA, MB and a correspondence model CAB between them
as input and combines their elements into a new output model.

In the three approaches there are some differences in the terminology to specify what a
composition is. Besides composition, the second most employed term is merge.
However it is advisable to separate merge and composition. Composition is a more
general operation. The semantic is specified in the different operations by a set of rules,
and it varies from case to case. Merge, however, is a special case of model composition.
Merge has information preservation constraints, i.e., all the information from the input
models should be present in the output models, and no duplicate information.

Definition 11 (Merge operation). The merge operation MAB = Merge (MA, MB, CAB)
takes two models MA, MB and a correspondence model CAB between them as input,
and returns a model MAB including all the information from MA and MB, without
duplicate information. The correspondence model is created by the match operation. It
specifies the elements that are going to be merged.

4 Requirements for Model Composition Frameworks

We now identify a core set of requirements for a model composition framework. By
doing so we attempt to complement the canonical definitions for model composition
presented in Section 3 with a concrete set of minimal requirements for a model
composition framework. Obviously, this is an initial set of requirements and it will
likely need refinement after more practical experience and experiments with the
frameworks have been carried out.

4.1 Requirements for a Model Composition Framework

A model composition framework must provide at least the following operations:

• means to identify corresponding elements in the models that are to be composed
(e.g., MOF classes with the same MOF identifier may be said to correspond, e.g.,
a weaving model or a set of rules).

358 J. Bézivin et al.

• means to define how corresponding elements are to be merged and composed in
producing the target model;

• means to define how elements that do not correspond can be transformed to the
target metamodel, in order to, e.g., not lose information.

• means to manage and reuse correspondences, merges, and compose operations.
In AMW this is supported via metamodel extension (e.g., by extending a weaving
model), whereas in EML this is supported via rule inheritance.

Thus, a model composition framework should also provide the means to carry out
transformations (e.g., via MOF 2.0 QVT or ATL) to satisfy the fourth requirement. In
order to satisfy the first two requirements, a model composition framework should
include the means to compare models.

Two desirable, practical requirements can be identified from the previous sections:

• A model composition framework should provide the means for minimising the
effort expended by the developer to write composition or merge operations, e.g.,
by allowing rules to be inferred by metamodel structure (e.g., merging strategies
in EML) or by allowing expressions of composition or weaving models to be
reused.

• A model composition framework should be metamodel independent to support
backwards compatibility, future extension, and a wide suite of modelling tools.

4.2 Requirements on Model Composition Tools

Tool support for model composition must provide at least the following:

• validation and verification of model composition operations, i.e., syntax and type
checking of rules, merging models, etc.

• a virtual machine (or similar means) for executing composition operations;
• a debugger, for analysing failures and inconsistencies that arise during the

composition process
• a serialisation mechanism for loading and saving models.

4.3 Comparison of AMW, GGT, and EML

We summarise the three previously described model composition frameworks against
the requirements identified in Section 4.1 and 4.2. The results of the comparison are
in Table 1; columns represent a particular framework, whereas rows represent a
model composition framework operation or feature. We note that all three
frameworks provide reasonably comprehensive coverage of tool requirements (though
only AMW provides debugging support via its integration with ATL).

We can observe from the summary in Table 1 that already we are seeing a conver-
gence of functionality in several of the existing frameworks: all three frameworks
support most, if not all of the operations described in the canonical set of definitions,
and it is already possible to loosely couple some of the frameworks (AMW and EML)
together via weaving models.

 A Canonical Scheme for Model Composition 359

Table 1. Comparison of model composition frameworks

 GGT AMW EML
Compose Glue Weaving model Merge rules
Merge Glue Weaving model Merge rules that

are information
lossless.

Transform Automatically
carried out.

ATL
transformations

Transform rules

Match Expression of
correspondence
(EC), via EMF GUI

Weaving model via
EMF GUI

Comparison rules
which produce
weaving models.

Correspondence EC Weaving model Comparison rules
Metamodel extn. No Yes Indirectly, via

generation of
weaving model
imported by
AMW.

Tool support No debugger. All. No debugger.

5 Conclusions

The main contributions of this paper are a canonical set of definitions regarding
model composition, and set of requirements for model composition frameworks. The
intent is that the canonical scheme, definitions, and requirements will be helpful for
comparing different model composition solutions, building new solutions, and
assessing the completeness and coherency of existing solutions. The contributions of
this paper may also be helpful in any future standardisation efforts – within or without
of the OMG – on model composition. We expect to work further on more closely
aligning the three frameworks described in this paper, and to explore additional
operations that engineers find helpful in model composition scenarios.

The fact that three different solutions for model composition have been developed
in the same project is not the mere result of hazard. It shows that the problem is of
practical importance and takes multiple forms. There is an obvious need for
unification and conceptualization in the field. As discussed in [15], the QVT OMG
model transformation proposal [2] only marginally addresses the composition issues.
What we have done in this paper is to gather some experimental material that may
help giving first class status to model composition as has been done previously with
model transformation techniques.

Acknowledgement

The work in this paper was supported by the European Commission via the
MODELWARE project. The MODELWARE project is co-funded by the European
Commission under the “Information Society Technologies” Sixth Framework

360 J. Bézivin et al.

Programme (2002-2006). Information included in this document reflects only the
authors' views. The European Commission is not liable for any use that may be made
of the information contained herein.

References

1. Object Management Group. Model Driven Architecture official web-site. Internet
resource. http://www.omg.org/mda/.

2. Meta Object Facility Queries-Views-Transformations. Internet resource. http:// neptune.
irit.fr/ Biblio/ qvt specification.shtml.

3. Object Management Group. XMI specification. Internet resource. http://www.omg.org/
technology/documents/formal/xmi.htm.

4. Object Management Group. Meta Object Facility official web-site. Internet resource.
http://www.omg.org/mof/.

5. Modelware IST Project. Internet resource. http://www.modelware-ist.org.
6. D.S. Kolovos, Epsilon Project Page, http://www.cs.york.ac.uk/~dkolovos
7. S. Bouzitouna and M. P. Gervais, Composition rules for PIM reuse, Proceedings of the

Second European Workshop on Model Driven Architecture with Emphasis on
Methodologies and Transformations (EWMDA’04), Canterbury, UK, September 2004,
pp36-43

8. S. Bouzitouna, M. P. Gervais and X. Blanc, Model Reuse in MDA, Proceedings of the
International Conference on Software Engineering Research and Practice (SERP’05), Las
Vegas, USA, June 2005.

9. M Lenzerini Data integration: a theoretical perspective, Proceedings of the twenty-first
ACM SIGMOD-SIGACT-SIGART Symposium on Principles of database systems, June
03-05, 2002, Madison, Wisconsin

10. Atlas Model Weaver Project Web Page. http://www.eclipse.org/gmt/amw/, 2005.
11. R. Pottinger and P. Bernstein. Towards Model Composition, in Proc. VLDB 2003, ACM,

2003.
12. C. Batini and M. Lenzerini. A Comparative Analysis of Methodologies for Database

Schema Integration. ACM Computing Surveys 18(4), December 1986.
13. R. Reddy, R. France, S. Ghosh, F. Fleurey, B. Baudry. Model Composition: a Signature

Based Approach. In Proc. Workshop on Aspect-Oriented Modelling, co-located with
MODELS 2005, October 2005.

14. T. Cottenier, A. van den Berg and T. Elrad. Modelling Aspect-Oriented Compositions. In
Proc. Workshop on Aspect-Oriented Modelling, co-located with MODELS 2005, October
2005.

15. F. Jouault and I. Kurtev. On the Architectural Alignment of ATL and QVT. Proc.
Symposium on Applied Computing (SAC 06), ACM Press, April 2006.

16. M. Didonet Del Fabro, J. Bézivin,, F. Jouault, and P. Valduriez. Applying Generic Model
Management to Data Mapping. Proc. Journées Bases de Données Avancées (BDA05),
Saint Malo, France.

	Introduction
	Model Composition Frameworks
	Atlas Model Weaver (AMW)
	Glue Generator Tool
	Epsilon Merging Language

	Glossary and Common Definitions
	Requirements for Model Composition Frameworks
	Requirements for a Model Composition Framework
	Requirements on Model Composition Tools
	Comparison of AMW, GGT, and EML

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

