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Abstract. The basic assumption in model engineering (MDE) is to consider 
models as first class entities. One of the most important kinds of models in 
MDE approaches are transformation models. Transformation models define 
operations between different models. However, there are many operations that 
are not efficiently handled by generic model transformations. For example, 
models transformations are not adapted to define and to capture relationships 
between models elements. Relationships between model elements are present in 
many different application scenarios, such as specification of transformations, 
traceability, or model alignment. We propose the use of weaving models to 
capture relationships between model elements. Weaving models can be used in 
different application scenarios, because they conform to different extensions of 
a core weaving metamodel. In this paper, we explain in detail what a model 
weaving is. We present a set of application scenarios, and we extract a set of 
basic requirements for creating relationships between model elements. Based on 
that, we define a core weaving metamodel, metamodel extensions, and describe 
a set of methods to create weaving models. We implement an Eclipse plugin 
named AMW (ATLAS Model Weaver) to support the creation of these weaving 
metamodels and models. 

1 Introduction 

Within the Eclipse Modeling Project GMT research incubator there is a plugin named 
AMW (ATLAS Model Weaver) with an associated user community. The present 
paper presents the rationale for using this plugin, with a set of application scenarios 
that motivate the plugin creation. AMW provides an adaptive workbench to support 
different applications of weaving models. 

The basic assumption in model driven engineering (MDE) is to consider models as 
first class entities. A model is an artifact that conforms to a metamodel and that 
represents a given aspect of a system. Current MDE approaches usually have three 
representation levels for models: metametamodel, metamodel and terminal models 
[Jouault 2006]. The metamodel describes the various kinds of the elements of a model 
and the way they are arranged, related and constrained. The metametamodel is the 
base representation format of all metamodels and models of one technical space 
[Bézivin 2005]. 



MDE platforms are composed of different kinds of models. One of the most 
important kinds of models are transformation models. Transformation models are 
used to define operations between model elements. A transformation model defines 
how a set of input models is transformed in a set of output models. A transformation 
model is executed in a transformation engine. 

However, model transformations are essentially conceived to define executable 
model transformation operations. An important issue that has not been studied in 
details by MDE solutions is how to define relationships (or links) between model 
elements, and to use them in practice. Links between models are used in many 
different classes of problems. In ontology merging [Maedche 2002, Mitra 2000], 
ontology bridges specify the equivalences between concepts of two or more 
ontologies. In data translation [Miller 2001, Milo 2000], one-to-one correspondences 
establish links between schema elements. These correspondences are used to 
automatically produce transformations. In model merging [Pottinger 2003], a set of 
links are used as input for a generic merging algorithm. In tool interoperability, 
weaving models are used as specification for tool interoperability transformations. In 
traceability scenarios [Jouault 2005], a traceability model keeps track of the source 
models elements that are used to produce a set of target elements. In model 
composition [Bézivin 2006], a set of links can specify how two models are composed. 

We propose to use weaving models to capture different kinds of links between 
model elements. A weaving model conforms to a weaving metamodel. Weaving 
models have special characteristics. They are not self contained, i.e., a weaving model 
is useful only if the related models exist as well. The links have different semantics, 
depending on the application scenario. For instance, an ontology merge link has a 
different semantic than a traceability link. Thus, the weaving metamodel must be 
extensible to capture these different kinds of links. 

Weaving models are created using different methods. The method used is closely 
related to the corresponding application scenario. For instance, matching heuristics 
can be used to automatically create weaving models that are specification for model 
transformations. Weaving models can be created manually by graphical user 
interfaces. Transformations can automatically generate weaving models to produce 
traceability information. 

Despite having large number of possible semantics, there is a set of common 
features in almost all of these application scenarios. We specify a core weaving 
metamodel that factors out these features. This metamodel provides basic link 
management. The different kinds of links are created as separated domain specific 
weaving metamodels (DSWMs), which are extensions to the core weaving 
metamodel. This is of significant importance, because as for normal models, the 
definition of a complete and complex metamodel capable of handling every 
application scenario is not a practical solution. 

In this paper, we present in detail what a weaving model is. First, we present a set 
of application scenarios in which is necessary to establish links between model 
elements. Based on these scenarios, we describe a set of common requirements for 
link management. Then, we describe the core weaving metamodel, and the key 
features to handle with these requirements. Finally we describe different methods 
used to create weaving models with the help of the generic AMW Eclipse plugin. 



This paper is organized as follows. Section 2 describes the set of application 
scenarios. Section 3 presents the common requirements for link management. Section 
4 describes a correspondence metamodel to capture these features. Section 5 describes 
different methods to create weaving models. Section 6 concludes. 

2 Application Scenarios 

In this section we describe a set of application scenarios where it is necessary to 
establish different kinds of links between model elements. First, we describe how 
links can be used to capture the semantic heterogeneities in tool interoperability 
scenarios. Second, we show how model composition operations are described in terms 
of typed-links. Then we present a traceability scenario. Finally, we introduce the use 
of different kinds of links in model alignment scenarios. 

2.1 Tool Interoperability 

Tool interoperability aims at using the models produced by one tool into another tool. 
Consider that two or more tools have distinct data, but they cannot come into 
agreement into a common tool or metamodel, due to practical reasons. In this case, it 
is necessary to produce transformations of one tool model (a source tool) into another 
tool model (a target tool). 

It is necessary to capture all the semantic heterogeneities between the set of tools 
and to translate the models from the source tool into the target tool. Many different 
transformation patterns are applied in these transformations, such as equality, 
equivalence, concatenation, etc. 

These transformation patterns depict translation links between the source and target 
tool metamodels. Each one of these patterns is usually coded in some specific 
transformation language. However, instead of directly creating a transformation 
between the tool models, typed links can capture these semantic heterogeneities in a 
more abstract representation. 

This has some advantages. The links can be created independently of any model 
transformation language. This enables to abstract any implementation details, such as 
complex navigation expressions. These links are semantically closer to the application 
domain than generic model transformation languages. They can be created by domain 
experts using adapted graphical user interfaces, or by automatic executing matching 
heuristics. Matching heuristics exploits the data from the source and target tool 
metamodels to automatically capture all (or a set) of the links between the tool 
models. 

This enables to semi-automate the process of transformation development for tool 
interoperability. These links are finally translated into an executable transformation 
language. 



2.2 Model Composition Operation 

Model composition is an operation that combines two or more models into a single 
one. A composition operation is a special type of transformation that takes two 
models Ma and Mb as input and that combines their elements into a model Mab. 
Model composition is a generic operation that varies from application to application. 
Which elements from Ma and Mb are combined and in which way depends on the 
operation implementation. For instance, if we compose two relational schemas, not all 
tables from both schemas are necessarily in the resulting schema. Composition 
operations contain different kinds of link that can be established, such as inheritance, 
aggregation, merging, overriding, union, etc. 

In the same way as in tool interoperability scenarios, there are different kinds of 
composition semantics. One of the major differences is relative to the cardinality of 
links, because typical composition scenarios have two models as input and one model 
as output. The abstraction level between the link specification and the final generated 
transformation is higher than in tool interoperability scenarios. General purpose 
transformation languages usually do not support the different kinds of composition 
links in a straightforward way. 

The links are high-level specifications for composition operations. The links are 
transformed into specific composition code patterns. How these patterns are 
implemented is not relevant to the operation developer. Consider for example one 
composition link called Union. The operation developer that creates a Union link is 
not aware about the transformation that is used to execute this low level operation. 

In addition, not all kind of models support every composition links. For instance, a 
relational model does not have inheritance or aggregation implemented natively. This 
motivates the creation of separated sets of links used only in dedicated composition 
applications. After these links have been established, we should generate 
transformations to execute the composition. 

2.3 Traceability 

Traceability aims at maintaining the connection between a set of models that are part 
of a complex process. For instance, traceability is related to model evolution or model 
provenance. Many different operations may be executed over models: they are 
transformed, updated, re-factored, composed, etc. Traceability aims at storing this 
information. For example, when transforming one model into another, traceability 
information enables to identify the set of target elements that are used to generate a 
set of target elements.  

Thus, traceability is achieved by creating different kinds of trace links between 
models (or metamodels) elements. The kinds of links that are created vary, for 
example Added, Modified, Generated, Replaced, etc. There are different use cases for 
traceability, for instance requirements traceability.  Requirements traceability keeps 
track of all the steps of a development process, analysis, design, programming, 
testing, etc. The kinds of links are developed_by, allocated_to, performed, based_on, 
modify, etc [Ramesh 2001]. 



2.4 Model Alignment 

Model alignment is the establishment of links between models that are semantically 
close, i.e., that represent a similar domain. Differently from model composition 
scenarios, model alignment does not merge or compose the linked models. 

Common use cases for model alignment are ontology alignment scenarios. In a 
second extend, the links can be used as input for generic merging operations, or to 
produce simple translation languages similar to tool interoperability scenarios. 

The kinds of links usually indicate the semantic proximity between the linked 
elements. For instance, links may indicate equivalence relationships, equality, 
similarity, negation, exclusion. 

3 Common Requirements for Link Management 

Despite having different objectives and applications, the basic notion of every 
application scenario described in the previous Section is the notion of a link. We 
illustrate the common requirements to establish links between model elements using 
two models Ma and Mb. Consider a weaving model Mw between Ma and Mb, denoted 
by the triple <Mw, Ma, Mb>. Mw contains a set of elements that link a set of 
elements of Ma with a set of elements of Mb. 

We propose to capture different kinds of links between model elements in weaving 
models. Weaving models have different purposes, depending on the kind of links 
required. For example a merge weaving model indicates how to merge elements of 
two models. A traceability weaving model indicates that one model is a new version 
of another.  

Let us assume now that Mw is a merge weaving model. An element mw ∈ Mw 
indicates that a given element ma ∈ Ma and an element mb ∈ Mb are linked. These 
elements are going to be merged as a result of a merge operation. In this case merge 
link is motivated by the equivalence semantics between the linked elements. The 
same is valid if Mw is a traceability weaving model. However, the link is interpreted 
in a different way: mb is derived from ma after some update operation. 

Hence, the links have a meaning, denoted by their type. For instance, in the merge 
scenario the link between elements ma and mb may conform to a link type denoting 
equivalence. In the traceability scenario, a ma may be new version of mb. 

A link may relate elements from more than two models. Consider a third model 
Mc, a tuple <Mw, Ma, Mb, Mc> and a model element mc ∈ Mc. An element mw ∈ 
Mw has a different semantic. For example it may indicate that ma, mb and mc are 
added and their result divided by three ((ma + mb + mc)/3). Finally, the weaving 
model Mw does not contain the concrete elements ma, mb or mc, but a reference that 
enables to access them in the containing models (Ma, Mb and Mc). It is necessary to 
have a way to access and to uniquely identify each linked element. 

Based on that, we define four main requirements to support link management using 
weaving models: 
• A weaving model should express the notion of links between model elements. 



• Different links types must be supported. The link type provides the semantic 
information on how the elements are related. For instance a link may indicate the 
equality or concatenation of model elements. 

• It must be possible to define links with different arities (unary, binary, ternary, 
etc.), i.e., a link has many endpoints. For example an equality link has two 
endpoints, while a concatenation link may have three endpoints (to elements 
concatenated into one). 

• The weaving model should have an identification mechanism to uniquely identify 
the model elements. The link endpoints do not contain the concrete metamodel 
elements, but a pointer that enables to access them in the containing models. 

4 Weaving Metamodel 

We define a core weaving metamodel to support the common requirements for link 
management. The design of a core weaving metamodel is a delicate compromise 
between expression power and minimality. 

We start by defining the core weaving metamodel. Then we present a set of 
possible extensions to this core metamodel. 

4.1 Core Weaving Metamodel 

We illustrate the core weaving metamodel in Figure 1. This metamodel is introduced 
in [Didonet Del Fabro 2005]. 
• WElement is the base element from which all other elements inherit. It has a name 

and a description. 
• WModel represents the root element that contains all model elements. It is 

composed by the weaving elements and the references to woven models. 
• WLink fulfils the first and second requirements. WLink express a link between 

model elements, i.e., it has a simple linking semantics. To be able to express 
different link types and semantics, this element is extended with different 
metamodels (we explain how to add different link types in the following section). 

• WLinkEnd handles the third requirement (called link endpoint). Every link 
endpoint represents a linked model element. This way it is possible to create N-ary 
links. 

• WElementRef satisfies the fourth requirement. We associate the WElementRef 
element with an identification function over the related elements. The function 
takes as parameter the model element to be linked and returns a unique identifier 
for this element. For practical reasons we define a string field ref that saves the 
return value of the function. There is also the inverse function that takes the value 
of the ref attribute, and returns the element from the related model. 

• WModelRef is similar to WElementRef element, but it references an entire model. 
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Fig. 1. The core weaving metamodel 

One may say it is possible to associate the identification functions directly with the 
link endpoints. We create separated WElementRef because it enables referencing the 
same model element by several link endpoints. 

This metamodel has only abstract types. However, we illustrate a simple weaving 
model in Figure 2. It links the elements of LeftMM and RightMM metamodels. The 
weaving model contains one link (WLink); the link contains two endpoints 
(WLinkEnd), i.e., one refers to an element in LeftMM and the other to an element in 
RightMM. Each WLinkEnd refer to one WElementRef. 

WLink

WLinkEnd WLinkEnd

ref = 'Root/Parent/Element'
WElementRef

ref = 'ID000011'
WElementRef

end
end

element element

Root

Parent

Element

id = 'ID000022'
Root

id = 'ID000011'
Element
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Fig. 2. A simple weaving model 

The left WElementRef has the identification (ID) of Element from LeftMM. The ID 
is calculated taking the element name (Element) and the name of the parents 
(Root/Parent). The right WElementRef refers to Element from RightMM. The ID is a 
string that is automatically generated. In this example the number of endpoints and 
linked elements are the same. However, we do not set the element ID directly in the 
WLinkEnd element because this way it is possible to refer the same element by 



different endpoints. Different link types, link endpoints and identification mechanisms 
are added using metamodel extensions. The link element must be extended to create 
different link types, for example equality, equivalence, dependency, and so on. 

4.2 Example of Concrete Weaving Types 

As already stated, the core weaving metamodel is not designed to handle every kind 
of link. In this section we describe different subsets of domain specific weaving 
metamodels DSWMs that are extensions of the core weaving metamodel. 

The definition of different link types is not a trivial task. It is an application 
oriented task that often requires in depth knowledge of the underlying domain. We 
envisage different DSWMs with different types of links: 
• Composition: links such as Override, Merge, Delete. 
• Interoperability: links such as Equality, SourceToTarget. 
• Data integration: Concatenation, Equality, IntToStr. 
• Traceability: Origin, Source, Evolution, Modified, Added. 
• Ontology alignment: Equivalent, Equality, Resemblance, Proximity. 

From this list (which is not exhaustive) we can see that some type of links overlap 
between different domains, for example equality links are available in almost every 
scenario. This motivates the creation of different sets of modular extensions to the 
core weaving metamodel. The extensions are reused in different application to finally 
create the desired DSWMs. We illustrate a set of extensions in Figure 3. 

 

Weaving metamodel

Equality

Data integration Ontology alignment Interoperability Composition Traceability  
Fig. 3. A set of DSWMs extensions 

A complete weaving metamodel covering every case is not a practical solution. 
The set of possible links is very extensive, adding much complexity and many link 
types that are not going to be used only in specific scenarios. 

5 Creation of Weaving Models 

In this section we introduce different methods to create weaving models. The whole 
process of creation of weaving models is encapsulated in a model management 
operation called Match [Bernstein 2003]. The Match operation is semi-automatic, i.e., 
it is an interactive process that alternates between the automatic execution of 
matching heuristics and the manual refinement of weaving models in a weaving tool. 



5.1 Automatic Generation 

The automatic generation of weaving models is subsumed in a match operation. The 
Match operation takes two models Ma and Mb as input and produces a weaving model 
Mw as output. Ma and Mb conform to MMa and MMb; Mw conforms to MMw. 

Mw : MMw = Match (Ma : MMa, Mb : MMb). 
The match operation creates a weaving model conforming to an extended weaving 

metamodel. The match operation executes a set of matching heuristics to search for 
similar concepts in the input models. There are many different methods that can be 
used to automatically create weaving models. We explain below two different 
methods: element-to-element and structural methods. 

5.1.1 Element-to-element 
Element-to-element methods calculate a similarity value between the elements of the 
input models. These values are used to create links between these elements. A link 
with a high similarity value indicates that there is a good probability that these 
elements have some semantic resemblance. Element-to-element methods consider 
only information about a pair of elements. We explain two different methods: 
• String similarity: the names of the model elements are considered strings. The 

names are compared using string comparison methods such as Levenshtein 
distance and edit distance [Cohen 2003]. 

• Dictionary of synonyms: the names are compared using a dictionary of synonyms 
(we use WordNet [Fellbaum 1998]). This dictionary provides a tree of synonyms. 
The similarity between two terms (element names) is calculated according to the 
distance between these terms in the synonym tree. 

5.1.2 Structural 
Structural methods calculate similarities using the internal properties of the model 
elements, e.g., types, cardinality, and the relationships between model elements, e.g., 
containment or inheritance trees. These data are encoded in the metamodels. They 
improve the accuracy of element-to-element methods. 
• Internal properties: model elements have a set of properties, such as type, 

cardinality, order, length, etc. Consider two model elements a ∈ Ma and b ∈ Mb; 
Ma and Mb are different models, but conform to the same metamodel. The set of 
properties of a are compared with the set of properties of b. If a given property has 
the same value, the elements have a good probability to be similar. 

• Element relationships: there are different kinds of relationships between elements 
of the same metamodel, for instance containment or inheritance relationships. 
Structural methods that exploit the element relationships rely on the following 
assumption: if two model elements are similar, the neighbors of these elements are 
likely to be similar as well. For example, if two attributes from two models have a 
high similarity value, the containing classes of these attributes have a good 
probability to be similar. One example of algorithm that exploits structural 
information is the similarity flooding algorithm [Melnik 2004]. 



5.2 Manual Creation 

Weaving models can also be created manually. For this it is necessary to have a tool 
that adapts to different kinds of metamodel extensions. We describe our tool called 
the ATLAS Model Weaver. The tool is available for download as an Eclipse GMT 
subproject [AMW 2006]. The tool provides mechanisms for manual creation of 
weaving metamodels and weaving models. The tool reuses part of the infrastructure 
of the ATL IDE [ATL 2006] based on the Eclipse Platform. The three notions on 
which we based the design are metamodel extensions, Eclipse Plugins and the Eclipse 
EMF platform [EMF 2006] for models’ manipulation. The tool borrows engineering 
concepts from the Eclipse Platform: to build a base workbench that is extensible to a 
wide range of applications.  

The workbench defines itself different extension points to contribute to the main 
editor (see Figure 4). The workbench is responsible for controlling the interaction 
between the different plugged components. The main idea of the implementation is to 
have a simple user interface of the weaving plugin that may be partially generated, 
without having to build a specific tool for each weaving metamodel. 

  
Fig. 4. The AMW plugin 

The plugin handles the base weaving metamodel described in the Section 4 and it 
can be extended incrementally. It is initially composed of three components: a left 
metamodel, the weaving metamodel and a right metamodel. The standard 
functionalities are themselves added as an extension to the base plugin, thus 
validating our generic approach. 



The screen-shot of Figure 4 is formed by 3 panels. The panels from left and right 
are tree interfaces extending the standard interface provided by EMF. The weaving 
model conforms to a weaving metamodel. The left and right panels can be exchanged, 
for instance by three-like panels or by graphical interfaces with boxes to represent 
elements and lines to represent links. The only constraint is that the components may 
implement a previously defined interface to return all model elements such that they 
can be accessed by the weaving component. 

6 Conclusions 

In this paper, we have presented a detailed description of model weaving. We 
described what a weaving model is, and how it conforms to extensions of a core 
weaving metamodel. This core weaving metamodel supports basic link management. 
We have shown from a set of application scenarios that the creation of links between 
model elements is an important issue in MDE. 

The diversity and specificity of the application scenarios demonstrate that it is not 
possible to efficiently cover every application requirement by using generic 
mechanisms, such as generic transformation languages, or mapping models. We 
presented a model weaving Eclipse plugin (ATLAS Model Weaver) that uses the 
reflective API of EMF to adapt to different weaving metamodel extensions. 

The metamodel extensions enable to create weaving metamodels with a vocabulary 
closer to each application domain. This allows creating weaving models using 
adapted graphical user interfaces, or using semi-automatic methods, such as different 
matching heuristics. These semi-automatic methods bring many advantages to the 
general process of transformation development and model alignment, since the 
semantic relationships are fully (or partially) discovered by automatic methods. 

There are some challenges yet to solve, for instance how to ameliorate existing 
matching methods to become more and more accurate, thus diminishing the human 
intervention on the link creation. Another important issue is to create different subsets 
of weaving metamodel extensions that subsume the most frequently used patterns for 
each application scenario, leading to the standardization of the domain. 

There is current a user community for the Eclipse AMW plugin. As new 
applications are found, it is very likely that this community will grow in the future. 
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